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Abstract

The purpose of factor analysis is to "summarize the

interrelationships among the variables in a concise but

accurate manner as an aid in conceptualization" (Gorsuch,

1983, p. 2). Kerlinger (1979) described factor analysis as

"one of the most powerful methods yet for reducing variable

complexity to greater simplicity" (p. 180). The purpose of

the present paper is to explain the meaning and use of

three important factor analytic statistics: factor scores,

factor structure coefficients, and communality

coefficients. In addition, four methods of calculating

factor scores are discussed.

3



GENERAL LINEAR MODEL 3

FACTOR SCORES, STRUCTURE COEFFICIENTS, AND COMMUNALITY

COEFFICIENTS: IT'S ALL ONE GENERAL LINEAR MODEL

The purpose of factor analysis is to "summarize the

interrelationships among the variables in a concise but

accurate manner as an aid in conceptualization" (Gorsuch,

1983, p. 2). In attempting to find discrete yet meaningful

insights about data (Horst, 1965), this summary should

include the maximum amount of information from the original

measured variables in as few latent or synthetic variables

or factors as possible, so as to keep the solution

parsimonious (Hetzel, 1996). Kerlinger (1979) described

factor analysis as "one of the most powerful methods yet

for reducing variable complexity to greater simplicity" (p.

180). Cattell (1978) wrote that factor analysis is "the

furthest logical development and reigning queen of the

correlation methods" (p. 4).

Simply, factor analysis, just like all other GLM

analyses, looks at the relationship between measured

variables and latent variables. However, some misuses and

misconceptions about factor analysis can be attributed to

the confusing language surrounding the method. As Pedhazur

and Schmelkin (1991) wrote:

Perusing even small segments of this [factor analysis]

literature in an effort to understand what FA [factor

4



GENERAL LINEAR MODEL 4

analysis] is, how it is applied, and how the results

are interpreted is bound to bewilder and frustrate

most readers. This is due to a wide variety of

contrasting and contradictory views on almost every

aspect of FA, serious misconceptions surrounding it,

and lack of uniformity in terminology and notation.

(p. 590)

Garbarino (1996) also commented on the confusing language

used to describe various parametric statistics:

For example, we call the same systems of weights

"equations" in regression, "factors" in factor

analysis, "functions" or "rules" in discriminant

analysis, and "functions" in canonical correlational

analysis. We call the weights themselves "beta"

weights in regression, "pattern coefficients" in

factor analysis, and "standardized function

coefficients" in discriminant analysis or canonical

correlation analysis. The synthetic scores are called

"yhat" in regression, "discriminant scores" in

discriminant analysis, and "canonical function (or

variate) scores" in canonical correlation analysis.

(p. 3)

Thompson (1992) noted that various statistical concepts

from different analyses (e.g., factor analysis, regression,

5
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canonical correlation analysis) "...are all analogous, but

are given different names in different analyses...mainly to

obfuscate the commonalities of [all] parametric methods,

and to confuse graduate students" (pp. 906-907). Further,

terms like "loadings" have been used ambiguously in

referring to both factor structure and pattern coefficients

(Thompson & Daniel, 1996).

The purpose of the present paper is to explain the

meaning and use of three important factor analytic

statistics: factor scores, factor structure coefficients,

and communality coefficients. In making sense of factor

analytic results, one must correctly identify and interpret

these three sets of statistics (Wells, 1999). Actually,

these results occur throughout analyses within the general

linear model (Thompson, 2000), but are arbitrarily given

different names. Despite the obvious importance of these

parameters a number of articles have failed to interpret,

as well as neglect to even report statistics like factor

structure coefficients (Thompson, 1997).

Various ways of estimating factor scores will be

compared and contrasted, including new non-centered

estimation methods (Thompson, 1993). The paper will also

illustrate that structure coefficients are bivariate

correlation coefficients between the measured variables in

6
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the factor analysis with the factor scores yielded in the

analysis (McMurray, 1987). Finally, communality

coefficients (h2) will be expressed as the R2 between the

factor scores on all the factors in a given solution with

the scores on a given measured variable (Wells, 1999).

Heuristic Data

In providing a general overview of the computations

and interpretations, as well as a step by step discussion

of factor analysis, the Holzinger and Swineford (1939) data

set will be used. For heuristic purposes, a portion of the

original 301 student observations on 25 measured variables

will be analyzed and present in a graphical format to

assist in providing a concrete understanding of factor

scores, communality coefficients, and factor structure

coefficients. More specifically, a factor analysis using

(a) cubes, simplification of Brigham's spatial relations

test; (b) paper form board; (c) lozenges from Thorndike;

(d) paragraph completion test; (e) word meaning test; (f)

speeded addition test; (g) speeded code test; (h) speeded

counting of dots; (i) memory of target words; (j) memory of

target numbers; (k) memory of target shapes on all 301

junior high students was performed.

A factor analysis was completed and five factors were

extracted. Although other types of factor extraction can be

7
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used, this paper applied principal components analysis,

which always maintains (unlike other extraction

methods)exactly the same correlations among the factor

scores as well as between the factors. Factor analysis is

just like all other General Linear Model statistics in that

it is correlational (Thompson, 1991). Therefore, just like

yhat scores in regression, factor scores are estimates of

the latent constructs of primary interest to researchers.

To get factor scores, pattern coefficients, and

structure coefficients we must first start with our raw

data matrix. As can be seen in Table 1, gaining

understandable information from a raw data matrix is

virtually impossible. The same is true as regards the Table

2 z-score form of the data; Table 3 presents the variable

labels. In fact, one important goal of factor analysis is

finding and understanding existing relationships between

observed variables as well as latent variables.

Therefore, rather than run analysis on the raw data

matrix or the z score matrix, which may contain "random or

unreliable information" (Horst, 1965, p. 469), factor

analysis begins with an association matrix (e.g.,

correlation matrix, covariance matrix). Instead of using

some other association matrix, the present factor analysis

used a correlation matrix of the measured variables, which
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is special case of a variance-covariance matrix (Fan,

1996). Not only does the correlation matrix attempt to

simplify the data, it also suggests existing relationships

between measured variables.

In this paper, we will be especially interested in two

Pearson correlation matrices. The Pearson correlation

matrix of the measured variables presented in Table 4 is

called "symmetric" because the number of columns and rows

are equal. Table 5 presents the factor pattern coefficients

"extracted" (Hetzel, 1996) from the Table 4 correlation

matrix; the factor pattern coefficients are mathematically

analogous to the beta weights derived in regression

analysis. Table 6 presents the factor correlation

coefficients.

The factor structure coefficients (unlike the pattern

coefficients) are always correlation coefficients, as we

shall see momentarily. Factor analysis structure

coefficients are directly analogous to the structure

coefficients derived throughout the general linear model,

including regression (Thompson & Borrello, 1985) and

canonical correlation analysis (Thompson, 2000).

In matrix algebra a matrix that when multiplied times

another matrix yields that other matrix is called an

"identity" matrix (i.e., the "identity matrix" is the
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matrix algebra equivalent to the number "1" in regular

algebra). An identity matrix has l's on the diagonal and

0's everywhere off the diagonal. Thus, the Table 6 factor

correlation coefficients constitute an identity matrix.

Because the factor structure coefficient matrix (SvrF)

equals the factor pattern coefficient matrix (PKTF) times

the factor correlation matrix (RFkF), and in present case

RaF = IaF , here Sv,F equals Rya,. This is why the numbers in

Tables 5 and 7 are the same. Thus, the two matrices might

have been presented as a single matrix, and labeled the

"pattern/structure matrix."

Factor Scores

Wells (1999) pointed out that a number of people

confuse factor scores with factors. Remember, a factor

score matrix has "n" rows (one for every individual), while

a factor matrix has "v" rows (as in a pattern/structure

coefficient matrix). To understand the utility of factor

scores we must first realize that factors are conceptual

entities or latent variables. While factors provide the

researcher with general information, the factor scores are

detailed representations that attempt to help us understand

these often confusing constructs.

Again, factor scores are similar to yhat scores in

regression. In regression, the yhat scores provided a

10
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linear combination of an individual's score on a measured

variable (Kachigan, 1982). Likewise, factor scores are

weighted combinations of scores on a series of measured

variables. A set of factor scores exists for every person

on every component of a factor. Rather than being derived

linearly, matrix algebra is used to estimate approximations

of each individual's factor scores. Four possible methods

(Gabarino, 1996; McDonald & Burr, 1967; Wells, 1999)

calculate factor scores:

1. The Regression Method, which is available in SPSS,

determines factor scores by multiplying the standardized

score matrix by the inverse of the variable correlation

matrix. Any matrix multiplied by an inverse matrix is

actually dividing out or removing the presence of the

inverse matrix. Therefore, the relationship between the

variables is removed. Table 8 presents these factor

scores for the present example.

Fmar = ZAbwR-Ivxv

2. The Bartlett Method (also available in SPSS) uses least

squares procedures to minimize the sum of squares of the

unique factors over the range of variables (Bartlett,

1937). Because the sum of squares of the unique factors are

minimized, non-common factors are used only to explain the

11
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discrepancies between observed scores and those reproduced

from the common factors. This method eventually leads to

high correlation between factor scores and factors being

estimated and ensures that the factor scores are the

unbiased estimates.

3. The Anderson-Rubin Method (Anderson & Rubin, 1956) (also

available in SPSS) is similar to the Bartlett Method with

an added condition requiring that factor scores must be

orthogonal. The resulting equation is more complex and

produces factor estimates whose correlations form an

identity matrix. These estimates are neither "univocal" nor

unbiased but do have reasonably high correlations with the

factors.

4. The Thompson Method (Thompson, 1993)could easily be

performed with SPSS using syntax creates factor scores that

are not generated in z score form. Although, the standard

deviation of the standardized factor scores is 1, as in z

score based formulas, the means of the measured variables

are added back into the factor scores (making them "non-

centered"). Therefore, researchers can compare the mean

factor scores across factors within a given analysis.

Basically, this method requires that the researcher convert

variables into standardized form, add original variable

means back onto the standardized estimates, and finally,

12
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obtain factor scores by multiplying these non-centered but

standardized values by the weight matrix (WvxF= P VxF I vxv )

(W 1/xF = PrixF R vxv )* Z NxV = F NxF

Factor Structure Coefficients

If the researcher wants to know the importance of a

variable to a specific factor in the presence of the other

variables the factor pattern coefficients or weights must

be consulted (especially if factors were correlated, as in

an oblique rotation). However, if we are interested in the

bivariate relationship between a measured variable and

specific latent variable, we look at structure coefficients

(Thompson, 1997). Not only are structure coefficients

essential in the interpretation of univariate statistics

(e.g., multiple regression), interpretation of multivariate

statistics often calls for separate assessment of structure

coefficients apart from weights (Thompson, 1992). Because

the five factors discerned in this paper were extracted

using principal components analysis and a varimax rotation,

the extracted factors are orthogonal (i.e., uncorrelated).

Wells (1999) pointed out that factors are "always perfectly

uncorrelated upon initial extraction, and remain

uncorrelated if an 'orthogonal' rotation is used" (p. 126).

The fifth factor was extracted for comparative

purposes and would not normally be extracted due to the

13
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failure to met extraction criteria (e.g., scree plot test,

eigenvalue test). In this factor analysis, the structure

coefficients have the same value as the pattern

coefficients. Better yet, the rotated pattern coefficient

matrix and factor structure coefficient matrices are equal

because the factor correlation matrix is an identity

matrix.

In the case of factor analysis, we are interested in

the relationship of specific measured variables with

specific factors or latent constructs (Gabarino, 1996). For

example, the measured variable t2 has a factor structure

coefficient of (.883) with Factor 4. Because structure

coefficients are a "score world" statistic we must "square

to compare". Therefore, the squared structure coefficient,

or the estimate of the bivariate relationship between t2

and Factor 4 can be expressed the "area world" form as .780

(.883 x .883 = .780). Squared structure coefficients

provide us additional methods of interpretations that are

very useful to factor analysis: (1) Eigenvalues; (2)

Communality coefficients. While a discussion on eigenvalues

might be beneficial, it is beyond the scope of this paper.

However, Stevens (1996) provides an effective treatment of

the topic.

14
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Communality Coefficients (h2)

Whereas structure coefficients look at bivariate

relationships between measured variables and a single

factor, communality coefficients look at or estimate

variance accounted for between one measured variable across

all the factors. Communality coefficients are best

described as each variable's variance that has been

reproduced by the extracted factors (Gorsuch, 1985).

The communality coefficient is the sum of squared

structure coefficients across all extracted factors. For

example, if communality of variable t2 were 1.00 or 100%,

we could entertain the idea that all of the variance in t2

was accounted for by the factors or all of the variance in

t2 was useful in identifying the factors. Communality

coefficients can only be positive or zero values, because

these estimates are dealing with squared numbers. McMurray

(1987) pointed out that communality coefficients can be

considered the multiple correlation coefficients in factor

analysis.

This is best seen in each of the variable's multiple R

squared. In this writing, a regression with each of the

variables being the dependent measure and the factor scores

being the predictors was performed. Each R squared value is

equal to the variable's communality coefficient; see Table

15
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9. It is taking into account all of the predictors'

influence or accounting for the variance of the factor

scores. Essentially, factors are reproducing the reliable

or usable variance/information from each measured variable.

Further, if we sum all of the communality coefficients and

divide by the number of variables, we see the total

proportion of variance accounted for by all five factors

equals 72.158.

In addition, communalities are also termed as the

proportion of variance that was useful in identifying or

delineating the factors (Gorsuch, 1983). Communality

coefficients are also lower-bound estimates of reliability.

In principal components analysis (used in this paper) the

initial reliability estimate of each variable is considered

perfect or 100% reliable. Obviously, it is highly unlikely

that all the measured variables will actually be found to

be completely reliable. Therefore, other types of factor

extraction do not assume perfect reliability.

Conclusion

In our present study of the eleven measured variables

from the 301 Holizinger (1939) students the interpretable

results would be (1) five extracted factors and 301 factor

scores for each of the factors;(2) 55 structure

coefficients would exist, one for each measured variable
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and its relationship with each of the extracted factors,

and (3) 11 communality coefficients could be determined,

one for each measured variable. As in other GLM procedures,

the combined evaluation of factor scores, structure

coefficients, pattern coefficients, and communality

coefficients enables the researcher to more accurately

formulate interpretations based on the results.

17
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Table 1: Raw Data Matrix

GENERAL LINEAR MODEL

Variable

Case T2 T3 T4 T6 T9 T10 T11 T12 T14 T15 T16

1 31 12 3 7 9 78 74 115 170 86 96

2 21 12 17 5 9 87 84 125 184 85 100

3 21 12 15 3 3 75 49 78 170 85 95

4 31 16 24 8 17 69 65 106 181 80 91

5 19 12 7 8 18 85 63 126 187 99 104

6 20 18 11 3 6 100 92 133 164 84 104

7 24 12 8 10 20 108 65 124 121 71 78

8 25 13 15 11 9 78 80 103 184 95 106

9 23 11 12 8 19 104 52 93 184 91 105

10 21 6 10 8 18 95 74 91 175 92 100

11 23 13 16 6 11 86 60 114 173 86 107

12 24 15 23 8 19 85 71 103 167 103 108

13 18 15 33 8 16 135 68 104 166 92 103

14 22 16 14 14 11 118 68 94 186 86 102

15 23 13 29 15 21 92 64 87 168 84 102

17 19 18 12 6 9 85 58 133 164 84 100

18 27 17 18 6 12 92 61 105 149 88 98

19 21 14 32 13 26 90 94 97 171 74 107

20 35 13 24 11 18 80 62 107 186 99 105

21 32 17 16 5 4 60 44 92 169 96 96

22 34 16 33 6 15 103 73 109 169 94 105

23 25 16 15 10 22 80 62 92 166 83 101

24 22 15 13 8 7 134 64 106 173 96 99

25 22 12 10 7 9 108 60 92 154 92 106

22

21
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Table 2: Standard Score Matrix (13 cases)

Variable

Case zt2 zt3 zt4 zt6 zt9 zt10 ztll zt12 zt14 zt15 zt16

1 1.41 -.79 -1.66 -.62 -.82 -.73 .31 .22 -.45 -.52 -.015

2 -.72 -.79 -.11 -1.20 -.32 -.37 .95 .71 .-77 -.65 -.33

3 -.71 -.79 -.33 -1.77 -1.60 -.85 -1.29 -1.61 -.45 -.65 -.99

4 1.41 .63 .66 -.34 .22 1.09 -.27 -.22 .51 -1.29 -1.51

5 -1 .14 -.7 .9 -1.22 -.34 -.45 -.39 .76 1.03 1.16 .19

6 -.92 -1.14 .00 -1.77 -1.21 .15 1.46 1.11 -.97 -.78 .19

7 -.07 -.79 -1.10 .23 .61 .47 -.27 .66 -4.70 -2.46 -3.21

8 .14 -.43 -.33 .52 -.82 -.73 .69 -.37 .77 .65 .46

9 -.29 -1.14 -.66 -.34 .48 .31 -1.10 -.87 .77 .13 .33

10 -.71 -1.49 -1.33 -.34 .35 -.05 .31 -.96 -.01 .26 -.33

11 -.29 -.43 -.22 -.91 -.56 -.41 -.58 .17 -.19 -.52 .59

12 -.07 .27 .55 -.34 .48 -.45 .12 -.37 -.711 .68 .72

13 -1.35 .27 1.66 -.34 .09 1.55 -.07 -.32 -.79 .26 .06

23
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Table 3: Variable Labels

Variable Labels

t2 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS TEST
t3 PAPER FORM BOARD-SHAPES THAT CAN BE COMBINED TO FORM A

TARGET
t4 LOZENGES FROM THORNDIKE-SHAPES FLIPPED OVER THEN

IDENITIFY TARGET
t6 PARAGRAPH COMPREHENSION TEST
t9 WORD MEANING TEST
t10 SPEEDED ADDITION TEST
tll SPEEDED CODE TEST
t12 SPEEDED COUNTING OF DOTS
t14 MEMORY OF TARGET WORDS
t15 MEMORY OF TARGET NUMBERS
t16 MEMORY OF TARGET SHAPES

2.4
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Table 4:
Correlation Matrix

Variable

t2

t3

t4

t6

t9

t10

tll

t12

t14

t15

t16

t2 t3 t4 t6 t9 tin fill

1.000

0.238 1.000

0.340 0.305 1.000

0.153 0.212 0.159 1.000

0.193 0.239 0.198 0.704 1.000

-0.076 0.040 0.072 0.174 0.121 1.000

0.108 0.126 0.199 0.342 0.290 0.447 1.000

0.092 0.177 0.186 0.107 0.150 0.487 0.398

0.068 0.073 0.128 0.222 0.172 0.093 0.225

0.085 0.036 0.212 0.069 0.052 0.109 0.140

0.236 0.184 0.305 0.241 0.253 0.117 0.305

25
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Table 5: Rotated pattern
and structure matrix ext=p.c.a./rotation=varimax)

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

t2 -0.042 0.131 0.007 0.883 0.001
t3 0.055 0.164 0.033 0.149 0.933
t4 0.149 0.023 0.219 0.632 0.355

t6 0.117 0.897 0.111 0.047 0.071

t9 0.093 0.897 0.06 0.126 0.119
t10 0.838 0.065 0.075 -0.139 -0.016
tll 0.677 0.327 0.207 0.139 -0.076
t12 0.807 -0.022 -0.025 0.135 0.181

t14 0.015 0.193 0.797 -0.072 0.019
t15 0.072 -0.106 0.792 0.077 0.02

t16 0.139 0.2 0.623 0.344 0.054

26
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Table 6: factor score (created using Regression)
correlation matrix

FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5

FSCORE1 1.00 0.00 0.00 0.00 0.00

FSCORE2 0.00 1.00 0.00 0.00 0.00

FSCORE3 0.00 0.00 1.00 0.00 0.00

FSCORE4 0.00 0.00 0.00 1.00 0.00

FSCORE5 0.00 0.00 0.00 0.00 1.00
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Table 7 :

Structure
coefficients

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

t2 -0.042 0.131 0.007 0.883 0.001
t3 0.055 0.164 0.033 0.149 0.933
t4 0.149 0.023 0.219 0.632 0.355
t6 0.117 0.897 0.111 0.047 0.071
t9 0.093 0.897 0.06 0.126 0.119
t10 0.838 0.065 0.075 -0.139 -0.016
tll 0.677 0.327 0.207 0.139 -0.076
t12 0.807 -0.022 -0.025 0.135 0.181

t14 0.015 0.193 0.797 -0.072 0.019

t15 0.072 -0.106 0.792 0.077 0.02
t16 0.139 0.2 0.623 0.344 0.054
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Table 8:
Communality

coefficients

Variables Communality Rsquared
t2 0.798 0.798

t3 0.924 0.924

t4 0.596 0.596
t6 0.839 0.839
t9 0.814 0.814
t10 0.732 0.732

tll 0.633 0.633

t12 0.704 0.704

t14 0.679 0.679

t15 0.649 0.649

t16 0.568 0.568
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Table 9: Abbreviated list of 25 individuals' factor scores

Case FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5

1 -.09121 -.44487 -.90708 .67799 -1.39301
2 .61821 -.88595 .10662 -.35552 -.60147
3 -1.27638 -1.52936 -.42944 -.47816 -.38047
4 -.80970 .11520 -1.01208 1.06929 .54899
5 -.05228 -.09570 1.17991 -1.33814 -.48943
6 1.46515 -1.48908 -.61697 .06798 -.98865
7 .88869 .60172 -4.77595 .00761 -.75787
8 -.34209 .00025 .94162 .04480 -.70099
9 -.66314 .18922 .63056 -.55803 -1.03886

10 -.30151 .32486 .18245 -.90708 -1.64946
11 -.18213 -.72998 -.07943 .04028 -.23886
12 -.33370 -.22387 .76709 .39468 .30503
13 .75589 -.47021 -.00926 -.44059 .86327
14 -.11508 .68688 .29098 -1.11849 .50387
15 -.72251 1.37653 -.62559 .27270 -.25045
16 -.88177 -.46100 -.16702 -.93657 -.09645
17 .23063 -1.00112 -.92091 -1.00163 1.78356
18 -.18653 -.82008 -1.46503 .67876 .91364
19 .12848 1.72671 -.91890 .35857 -.09471
20 -.78864 .26088 .88273 1.86228 -.80601
21 -1.62734 -1.54124 -.14411 1.07094 .87014
22 .17007 -.81524 -.07318 2.30952 .33252
23 -.92434 .82994 -.93307 -.00363 .48972
24 .59265 -.90309 .27003 -.92394 .32785
25 -.12663 -.72006 -.43979 -.27037 -.83780
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SYNTAX REFERENCE
SET BLANKS=SYSMIS UNDEFINED=WARN PRINTBACK=LISTING.
DATA LIST

FILE='c:\WINDOWS\Desktop\New Folder\holzinger.dta' FIXED
RECORDS=2 TABLE /1

Id 1-3 sex 4-4 ageyr 6-7 agemo 8-9 tl 11-12 t2 14-15 t3 17-18 t4
20-21 t5 23-24 t6 26-27 t7 29-30 t8 32-33 t9 35-36 t10 38-40 tll 42-44
t12 46-48 t13 50-52 t14 54-56 t15 58-60 t16 62-64 t17 66-67 t18 69-70
t19 72-73 t20 74-76 t21 78-79 /2 t22 11-12 t23 14-15 t24 17-18 t25 20-
21 t26 23-24 .

EXECUTE.
COMPUTE SCHOOL=1.
IF (id GT 200) SCHOOL=2.
IF (id GE 1 AND id LE 85) GRADE=7.
IF (id GE 86 AND id LE 168) GRADE=8.
IF (id GE 201 AND id LE 281)GRADE=7.
IF (id GE 282 AND id LE 351)GRADE=8.
IF (id GE 1 AND id LE 44)TRACK=2.
IF (id GE 45 AND id LE 85)TRACK=1.
IF (id GE 86 AND id LE 129)TRACK=2.
IF (id GE 130) TRACK=1.
PRINT FORMATS SCHOOL TO TRACK(F1.0).
VALUE LABLES SCHOOL(1)PASTEUR (2)GRANT-WHITE/TRACK (1)JUNE PROMTIONS(2)
FEB PROMOTIONS/.
VARIABLE LABELS tl VISUAL PERCEPTION TEST FROM SPEARMAN VPT, PART III
t2 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS
t3 PAPER FORM BORAD-SHAPES THAT CAN BE COMBINED TO FORM
t4 LOZENGES FROM THORNDIKE-SHAPES FLIPPED OVER THEN IDENT
t5 GENERAL INFORMATION VERBAL TEST
t6 PARAGRAPH COMPREHENSION TEST
t7 SENTENCE COMPLETION TEST
t8 WORD CLASSIFICATION-WORD THAT DOES NOT BELONG
t9 WORD MEANING TEST
t10 SPEEDED ADDITION
tll SPEEDED CODE TEST
t12 SPEEDED COUNTING OF DOTS
t13 SPEEDED DISCRIM STRAIGHT AND CURVE
t14 MEMORY OF TARGET WORDS
t15 MEMORY OF TARGET NUMBERS
t16 MEMORY OF TARGET SHAPES
t17 MEMORY OF OBJECT-NUMBER ASSOCIATION
t18 MEMORY OF NUMBER-OBJECT ASSOCIATION
t19 MEMORY OF FIGURE-WORD ASSOCIATION
t20 DEDUCTIVE MATH ABILITY
t21 MATH NUMBER PUZZLES
t22 MATH WORD PROBLEM
t23 COMPLETION OF A MATH NUMBER SERIES
t24 WOODY-MCCALL MIXED MATH FUND
t25 REVISION OF T3-PAPER FORM
t26 FLAGS-POSSIBLE SUBSTITUTE FOR T4 LOZENGES .

SUBTITLE 'FACTOR 11 VARIABLES INTO FACTORS***'.
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FACTOR VARIABLES=t2 t3 t4 t6 t9 t10 tll t12 t14 t15
t16/PRINT=ALL/PLOT=EIGEN/CRITERIA=FACTORS(5)/EXTRACTION=PC/ROTATION=VAR
IMAX/SAVE=REG(ALL FSCORE).
LIST VARIABLES=FSCORE1 FSCORE2 FSCORE3 FSCORE4
FSCORE5/CASES=25/FORMAT=NUMBERED.
Subtitle 'la. Factor scores BARTLETT method * * * *'.
FACTOR VARIABLES=t2 t3 t4 t6 t9 t10 tll t12 t14 t15
t16/CRITERIA=FACTORS (5)/EXTRACTION=PC/ROTATION=VARIMAX/SAVE=BART (ALL
FSCOR).
VARIABLE LABELS FSCORE1 'SPEED bart'
FSCORE2 'MEMORY bart' FSCORE3 FSCORE4 FSCORE5.
Subtitle 'lb. Factor scores Anderson-Rubin method****'.
FACTOR VARIABLES=t2 t3 t4 t6 t9 t10 tll t12 t14 t15
t16/CRITERIA=FACTORS (5)/EXTRACTION=PC/ROTATION=VARIMAX/SAVE=BART (ALL
FSCR).
VARIABLE LABELS FSCR1 'SPEED ar'
FSCR2 'MEMORY ar' FSCR3 FSCR4 FSCR5.
Subtitle '2a. Compute z-score****'.
DESCRIPTIVES VARIABLES=t2 t3 t4 t6 t9 t10 tll t12 t14 t15 t16/save.
print formats zt2 zt3 zt4 zt6 zt9 zt10 ztll zt12 zt14 zt15 zt16(F8.5) .

List variables=zt2 zt3 zt4 zt6 zt9 zt10 ztll zt12 zt14 zt15
zt16/cases=25.
Subtitle '2b. Prove z-scores are z-scores***'.
DESCRIPTIVES VARIABLES=zt2 zt3 zt4 zt6 zt9 zt10 ztll zt12 zt14 zt15
ztl6
Subtitle '2c. Compute regression factor scores hard way***'.
COMPUTE FSHARD1=(-.042*zt2)+ (.055
*zt3)+(.149*zt4)+(.117*zt6)+(.093*zt9)+
(.838*zt10)+(.677*zt11)+(.807*zt12) +(.015*zt14)+(.072*zt15)+(.139 *
zt16).
COMPUTE FSHARD2=(.131*zt2)+
(.164*zt3)+(.023*zt4)+(.897*zt6)+(.897*zt9)+ (.065*zt10)+(.327
*zt11)+(-.022 *zt12) +(.193*zt14)+(-.106*zt15)+(.2* ztl6).
COMPUTE FSHARD3=(.007*zt2)+ (.033*zt3)+(.219
*zt4)+(.111*zt6)+(.06*zt9)+ (.075*zt10)+(.207*zt11)+(-.025*zt12)
+(.797*zt14)+(.792 *zt15)+(.623*zt16).
COMPUTE FSHARD4=(.883*zt2)+ (.149*zt3)+(.632*zt4)+(.047 *zt6)+(.126
*zt9)+ (-.139*zt10)+(.139 *zt11)+(.135 *zt12) +(-
.072*zt14)+(.077*zt15)+(.344*zt16).
COMPUTE FSHARD5=(.001*zt2)+
(.933*zt3)+(.355*zt4)+(.071*zt6)+(.119*zt9)+ (-.016*zt10)+(-
.076*zt11)+(.181*zt12) +(.019*zt14)+(.02 *zt15)+(.054*zt16) .

VARIABLE LABELS FSHARD1 'SPEED hard'
FSHARD2 'MEMORY hard' FSHARD3 FSHARD4 FSHARD5.
Subtitle '3a. Compute Thompson factor scores ***'.
COMPUTE TT2=zt2+24.35 .

COMPUTE TT3=zt3+14.23.
COMPUTE TT4=zt4+18.00.
COMPUTE TT6=zt6+9.18.
COMPUTE TT9=zt9+15.30.
COMPUTE TT10=zt10+96.28 .

COMPUTE TT11=zt11+69.16.
COMPUTE TT12=zt12+ 110.54.
COMPUTE TT14=zt14+175.15 .

COMPUTE TT15=zt15+90.01 . BESTCOPYAVAILAF3LE
COMPUTE TT16=zt16+102.52.
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COMPUTE FSBT1=(-.042*zt2)+ (.055*zt3)+(.149*zt4)+(.117*zt6)+(.093*zt9)+
(.838*zt10)+(.677*zt11)+(.807*zt12) +(.015*zt14)+(.072*zt15)+(.139 *
zt16).
COMPUTE FSBT2=(.131*zt2)+ (.164*zt3)+(.023*zt4)+(.897*zt6)+(.897*zt9)+
(.065*zt10)+(.327 *zt11)+(-.022 *zt12) +(.193*zt14)+(-.106*zt15)+(.2*
zt16).
COMPUTE FSBT3=(.007*zt2)+ (.033*zt3)+(.219 *zt4)+(.111*zt6)+(.06*zt9)+
(.075*zt10)+(.207*zt11)+(-.025*zt12) +(.797*zt14)+(.792
*zt15)+(.623*zt16).
COMPUTE FSBT4=(.883*zt2)+ (.149*zt3)+(.632*zt4)+(.047*zt6)+(.126 *zt9)+
(-.139*zt10)+(.139 *zt11)+(.135 *zt12) +(-
.072*zt14)+(.077*zt15)+(.344*zt16).
COMPUTE FSBT5=(.001*zt2)+ (.933*zt3)+(.355*zt4)+(.071*zt6)+(.119*zt9)+
(-.016*zt10)+(-.076*zt11)+(.181*zt12) +(.019*zt14)+(.02
*zt15)+(.054*zt16) .

VARIABLE LABELS FSBT1 'SPEED thompson'
FSBT2 'MEMORY thompson' FSBT3 FSBT4 FSBT5.

Subtitle '4. Show factor score relationship ***'.
LIST VARIABLES=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 FSCR1 FSCR2
FSCR3 FSCR4 FSCR5 FSHARD1 FSHARD2 FSHARD3 FSHARD4 FSHARD5
FSBT1 FSBT2 FSBT3 FSBT4 FSBT5/CASES=25.
DESCRIPTIVES VARIABLES=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 FSCR1
FSCR2 FSCR3 FSCR4 FSCR5 FSHARD1 FSHARD2 FSHARD3 FSHARD4 FSHARD5
FSBT1 FSBT2 FSBT3 FSBT4 FSBT5 .

CORRELATIONS VARIABLES=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 FSCR1
FSCR2 FSCR3 FSCR4 FSCR5 FSHARD1 FSHARD2 FSHARD3 FSHARD4 FSHARD5
FSBT1 FSBT2 FSBT3 FSBT4 FSBT5 .

CORRELATION VARIABLES=t2 t3 t4 t6 t9 t10 tll t12 t14 t15 t16 WITH
FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 .

CORRELATION VARIABLES=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5.
COMMENT 'REGRESSION WITH EACH DEPENDENT VARIABLE BEING A DEP VAR WITH
THE OTHER DEP VARIABLES AND FSCORES BEING PREDICTOR VARIABLES'.
COMMENT MULTIPLE R-SQUARE IN REGRESSION EQUALS THE COMMUNALITY
COEFFICIENT FOR EACH MEASURED VARIABLE'.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t2/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t3/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t4/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t6/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t9/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t10/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16 /dependent =tll /enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
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Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t12/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=14/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=15/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tll t12 t14 t15 t16/dependent=t16/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORE5.
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